Nonparametric Conditional Density Estimation Using Piecewise-Linear Solution Path of Kernel Quantile Regression

نویسندگان

  • Ichiro Takeuchi
  • Kaname Nomura
  • Takafumi Kanamori
چکیده

The goal of regression analysis is to describe the stochastic relationship between an input vector x and a scalar output y. This can be achieved by estimating the entire conditional density p(y / x). In this letter, we present a new approach for nonparametric conditional density estimation. We develop a piecewise-linear path-following method for kernel-based quantile regression. It enables us to estimate the cumulative distribution function of p(y / x) in piecewise-linear form for all x in the input domain. Theoretical analyses and experimental results are presented to show the effectiveness of the approach.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Direct Approach to Inference in Nonparametric and Semiparametric Quantile Regression Models

This paper makes two main contributions. First, we construct “density-free” confidence intervals and confidence bands for conditional quantiles in nonparametric and semiparametric quantile regression models. They are based on pairs of symmetrized k-NN quantile estimators at two appropriately chosen quantile levels. In contrast to Wald-type confidence intervals or bands based on the asymptotic d...

متن کامل

Kernel Estimation of Distribution Functions and Quantiles with Missing Data

A distribution-free imputation procedure based on nonparametric kernel regression is proposed to estimate the distribution function and quantiles of a random variable that is incompletely observed. Assuming the baseline missing-at-random model for nonrespondence, we discuss consistent estimation via estimating the conditional distribution by the kernel method. A strong uniform convergence rate ...

متن کامل

Nonparametric estimation of conditional quantiles using quantile regression trees

A nonparametric regression method that blends key features of piecewise polynomial quantile regression and tree-structured regression based on adaptive recursive partitioning of the covariate space is investigated. Unlike least squares regression trees, which concentrate on modeling the relationship between the response and the covariates at the center of the response distribution, our quantile...

متن کامل

Nonparametric multivariate conditional distribution and quantile regression

In nonparametric multivariate regression analysis, one usually seeks methods to reduce the dimensionality of the regression function to bypass the difficulty caused by the curse of dimensionality. We study nonparametric estimation of multivariate conditional distribution and quantile regression via local univariate quadratic estimation of partial derivatives of bivariate copulas. Without restri...

متن کامل

THE COMPARISON OF TWO METHOD NONPARAMETRIC APPROACH ON SMALL AREA ESTIMATION (CASE: APPROACH WITH KERNEL METHODS AND LOCAL POLYNOMIAL REGRESSION)

Small Area estimation is a technique used to estimate parameters of subpopulations with small sample sizes.  Small area estimation is needed  in obtaining information on a small area, such as sub-district or village.  Generally, in some cases, small area estimation uses parametric modeling.  But in fact, a lot of models have no linear relationship between the small area average and the covariat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Neural computation

دوره 21 2  شماره 

صفحات  -

تاریخ انتشار 2009